
Fast Encoding and Decoding for Implicit Video Representation

Hao Chen1 Saining Xie2 Ser-Nam Lim3 Abhinav Shrivastava4

1Meta AI 2New York University 3University of Central Florida
4University of Maryland, College Park

NeRV model

NeRV-Dec

NeRV-Enc

Input video

Output video

Video
encoding

Video
decoding

Figure 1. Left: video encoding for implicit video representations. NeRV-Enc is 104× faster than NeRV [5] baseline (with gradient-based
optimization). * uses a larger encoder and more training videos. Right: video decoding. NeRV-Dec decodes videos 8.9× faster than NeRV
and 11× faster than H.264. It is even 2.5× faster than loading pre-decoded videos from RAM while being 65× smaller in video size.

Abstract

Despite the abundant availability and content richness
for video data, its high-dimensionality poses challenges for
video research. Recent advancements have explored the
implicit representation for videos using neural networks,
demonstrating strong performance in applications such as
video compression and enhancement. However, the pro-
longed encoding time remains a persistent challenge for
video Implicit Neural Representations (INRs). In this pa-
per, we focus on improving the speed of video encoding and
decoding within implicit representations. We introduce two
key components: NeRV-Enc, a transformer-based hyper-
network for fast encoding; and NeRV-Dec, a parallel de-
coder for efficient video loading. NeRV-Enc achieves an im-
pressive speed-up of 104× by eliminating gradient-based
optimization. Meanwhile, NeRV-Dec simplifies video de-
coding, outperforming conventional codecs with a loading
speed 11× faster, and surpassing RAM loading with pre-
decoded videos (2.5× faster while being 65× smaller in
size).

1. Introduction
Video research is a fundamental area in computer vision,
owing to its rich visual content and widespread presence.
However, the immense size of video data presents chal-

lenges, as video storage, loading, and processing demands
are orders of magnitude larger than those for images. Re-
cent research has explored the potential of representing
high-dimensional video data as deep neural networks [5–
7, 21, 27, 29]. These representations are favored in ap-
plications like video compression (achieving up to 1000×
size reductions while maintaining good visual quality), and
video enhancement [5, 7, 13, 27]. Unlike pixel-wise Im-
plicit Neural Representation (INR) methods that use MLP
networks to model individual pixels, the NeRV series [5–
7, 21] employs convolution neural networks to generate en-
tire frames, enhancing video encoding and decoding effi-
ciency.

Despite the efficiency gains achieved by the NeRV se-
ries, training a neural network to overfit a given video us-
ing gradient-based optimization remains time-consuming.
Since video encoding involves mapping input video to
NeRV model weights, we propose a straightforward alter-
native: NeRV-Enc. NeRV-Enc employs a hyper-network to
directly generate model weights, thus avoiding the cumber-
some encoding process. Our work addresses two fundamen-
tal questions: Can a hyper-network be effectively trained
on a given video dataset? And can a well-trained hyper-
network generalize well to unseen videos?

Given the outstanding performance of transformer net-
works in various visual tasks [4, 15, 22, 32, 49], we uti-
lize transformers as the hyper-network. This hyper-network

1

takes video patches and initial weight tokens as input, de-
picted in Fig. 2. Our research demonstrates that NeRV-Enc
provides positive answers to the questions raised earlier. We
show that it is indeed possible to train NeRV-Enc on train-
ing videos, and it effectively generalizes to unseen videos.
In comparison to training NeRV with gradient-based op-
timization, NeRV-Enc significantly reduces the encoding
time, achieving a speed-up of 104× (Fig. 1 Left).

In addition to video encoding, efficient decoding plays a
vital role. While a video is encoded just once, it can be de-
coded countless times. As such, the efficiency of decoding
is critical for video playback, streaming, and preview. In
the context of video research, especially in large-scale ex-
periments, video loading involves a more complex decod-
ing pipeline compared to image data loaders. Data loaders
that require significant computational resources can prolong
research cycles and present substantial hurdles when train-
ing video models with extensive datasets [52]. Indeed, data
loading significantly hampers training efficiency, causing
a slowdown of 46% in video self-supervised learning, as
highlighted in [17]. In this context, video loading stands
out as a critical bottleneck, hindering the progress of video
research. To address this issue, we present NeRV-Dec, a
parallel and efficient video loader based on NeRV.

Traditional video codecs, like H.264, face challenges
with complex decoding pipelines, demanding customized
design and optimization for specific applications. In con-
trast, our NeRV-Dec makes vidoe decoding simpler and
faster by efficient parallelization. As shown in Fig. 1
Right, NeRV-Dec is 8.9× faster than the NeRV baseline
and achieves an 11× speed improvement over H.264. No-
tably, NeRV-Dec outperforms RAM loading of pre-decoded
videos by 2.5× faster, while utilizing much less disk stor-
age (65× smaller). Unlike existing video codecs tailored
primarily for CPU use, NeRV-Dec emerges as the supe-
rior choice, especially in deep learning research. NeRV-
Dec efficiently utilizes the power of advanced hardware like
GPUs, TPUs, and NPUs, which are already the favored plat-
forms for many users. It achieves this without the need for
any specialized design or optimization for video loading,
making it highly compatible and easy to integrate into ex-
isting workflows.

In summary, this paper introduces NeRV-Enc, a hyper-
network designed to accelerate encoding by generating
NeRV model weights without gradient-based optimization.
Our results show the substantial potential of NeRV-Enc,
achieving an impressive speed-up of 104× compared to
training NeRV with gradient-based optimization. Addition-
ally, we present NeRV-Dec, an parallel video decoder that
is 11× faster than tradition codecs (H.264) and 2.5× faster
than loading pre-decoded videos from RAM.

2. Related Work

Implicit Neural Representations. Recent advances in
deep learning have given rise to implicit neural representa-
tions, which are compact data representations [5, 6, 16, 34].
These representations fit neural networks to signals like im-
ages, 3D shapes, and videos. A prominent subset of im-
plicit representations is coordinate-based neural represen-
tations, which take pixel coordinates as input and produce
corresponding values, such as density or RGB values, us-
ing MLP networks. These representations have demon-
strated promise in diverse applications, including image
reconstruction [44, 48], image compression [16], continu-
ous spatial super-resolution [2, 11, 23, 45], shape regres-
sion [12, 37], and novel view synthesis for 3D scenes [36,
41].

In contrast to coordinate-based methods, NeRV [5] intro-
duces an image-wise implicit representation that takes the
frame index as input and outputs the entire frame without
iterative pixel-wise computations. NeRV leverages convo-
lutional neural networks, offering improved efficiency and
regression quality compared to coordinate-based methods.
By representing videos as neural networks, NeRV trans-
forms video compression into model compression, achiev-
ing comparable performance with common video codecs
through model pruning, quantization, and entropy encod-
ing. Building on NeRV’s success, works [6, 7, 21, 29] fur-
ther enhance efficiency and shows superior performance in
video compression, interpolation, and enhancement. Our
approach leverages image-wise representations since NeRV
series provide higher capacity and faster decoding speed
compared to coordinate-based methods.

Hyper-Networks. Hyper-networks [19] are commonly
employed to generate model weights for another neural
network based on input data or a dataset. The concept
of content-adaptive weights is prevalent in deep learning,
exemplified in techniques like dynamic convolution [10]
and conditional convolution [53]. Various methods have
been developed to modulate model weights in a latent
space [35, 37, 42, 43] rather than generating all weights
directly, a strategy that can alleviate learning challenges.
In these approaches, the neural network takes both pixel
coordinates and a content-adaptive vector for modulation,
where the modulated vectors serve as the hyper-networks.
TransINR [8] and GINR [26] employ hyper-networks to
generate model weights for pixel-wise INRs, suitable for
image and video regression.

Efficient Video Codecs. Existing video dataloaders rely
on traditional codecs like MPEG [28], H.264 [50], and
HEVC [47] to reduce video size. Advanced video codecs
like AV1 [9] and VVC [3] offer improved compression but
at the expense of longer decoding times, hampering data
loading speed. Recent developments in deep learning have

2

Variable Definition

x Input video
xt Video frame at time t
x̂t Reconstructed video frame at time t
gϕ Hyper-network (w/ parameter ϕ)
fθ NeRV model (w/ parameter θ)
θ0 Initial weight tokens (hyper-network input)
θ̂′ Hyper-network output: video-specific weights
θ1 Video-agnostic model weights
θ′ Final NeRV model weights
Dtrain, Dtest Training and test set
Cout, Cin Convolution output and input channel width
K, S Kernel size, upscale factor for NeRV blocks
M Number of video patches
N Number of weight tokens
d Token dimension for transformer encoder
dout Output dimension for weight tokens

Table 1. Variables and their definitions.

introduced techniques for video compression, seeking to en-
hance traditional methods, including image compression,
interpolation [14, 51], autoencoders [20], modeling condi-
tional entropy between frames [31], and rethinking video
compression with deep learning [1, 30, 39], or refine exist-
ing codecs [25, 40]. Although these learning-based methods
improve bits-distortion performance, they introduce signif-
icant decoding latency, rendering them unsuitable for fast
video loading.

In contrast, loading videos with implicit representations
is straightforward, simple, and fast. NeRV [5], a recent im-
plicit video representation, achieves comparable compres-
sion performance with traditional video codecs, by reshap-
ing video compression into model compression. The video
decoding process in NeRV is a simple feed-forward opera-
tion of the convolution network and can be seamlessly de-
ployed across various devices without specific design or op-
timization. Drawing inspiration from NeRV, our NeRV-Dec
significantly reduces video model size via quantization and
entropy encoding. Meanwhile, it improves decoding speed
further by enabling scalability and improved parallelization.

3. Method
To improve the encoding speed of implicit video represen-
tation, we present NeRV-Enc. It employs a hyper-network
denoted as gϕ to generate weights θ′ for the NeRV model fθ,
based on input video data x ∈ Rt×3×h×w. These learned
weights are then used to reconstruct video frames, yielding
x̂t = fθ=θ′(t). The primary objective is to minimize the re-
construction error between x̂t and the its ground truth xt for
training videos Dtrain, while ensuring the generalization to
testing videos Dtest. Additionally, we introduce NeRV-Dec,

Video decoding

NeRV model
weights Conv

layer
Conv
layer

Frame
index

Frame
output

Conv
layer

t

Initial weights

Video-specific
 weights

Video patches

Expand

Transformer
encoderHyper-network

Input video

N
eR

V-
En

c

Video-agnostic
weights

Video-specific
weights

N
eR

V-
D

ec

ExpandExpand

Figure 2. Top: video encoding. NeRV-Enc processes the in-
put video x to get video-specific weights θ̂′ using the hyper-
network. Bottom: video decoding. NeRV-Dec generates final
NeRV weights θ′ and reconstruct video x̂.

a method designed for parallel video decoding with good
efficiency. Please consult Tab. 1 for a comprehensive list of
symbol definitions.

3.1. Video Encoding: NeRV-Enc

Generate Video-Specific Weights. We employ a Trans-
former network with L encoder layers as a hyper-network to
generate video-specific model weights, denoted as θ̂′. The
input video x is partitioned into patches, which are then
transformed into patch tokens using a fully connected (FC)
layer. Additionally, learned position embeddings are added
to these patch tokens. These patch tokens, in conjunction
with the initial weight tokens θ0, form the input tokens.
Subsequently, the hyper-network processes these input to-
kens to produce video-specific weights θ̂′ ∈ Rdout×N , which
serves as an compact representation of the video. This en-
coding process is depicted in Fig. 2 Top and Fig. 4 Left.

Adaptive Weight Tokens across Layers. We’ve observed
that token importance varies across different layers. Un-
like TransINR [8], which employs an identical number
of weight tokens for all layers, or GINR [26], which re-
stricts weight tokens to a specific layer (2nd layer), we in-
troduce a flexible and adaptive approach to weight token
distributions. This customization results in three distinct
schemes: uniform weight tokens (TransINR), layer-specific
weight tokens (GINR), and adaptive weight tokens (our ap-
proach), each designed to suit video-specific weight distri-
bution across layers. These diverse weight distributions are
visually depicted in Fig. 3.
NeRV-Enc for Video Restoration. Implicit video rep-
resentations have proven to be good at video restoration
tasks such as denoising and inpainting. Besides reconstruc-

3

Uniform tokens
(TransINR etc.)

Layer-specific
tokens (GINR etc.)

Layer-adaptive
tokens (ours)

Layer 1

Layer 2

Layer 3

Layer 4

Video-agnostic weights Final NeRV weights Video-specific weights

Figure 3. Weight token distributions across layers. Left: Uniform
(TransINR [8]). Middle: Layer-specific (GINR [27]). Right:
Layer-adaptive (ours).

tion, we also extend NeRV-Enc to various video restora-
tion tasks. NeRV-Enc takes degraded videos as input and
use ground truth videos as supervision. Evaluations on un-
seen videos indicate that NeRV-Enc effectively addresses
these degradation tasks. Note that while previous implicit
methods like NeRV and HNeRV demonstrate competence
in restoration tasks, they often require additional supervi-
sion, such as masks for inpainting. Furthermore, their train-
ing might require reference data for the test video, like
high-resolution or de-blurred frames. In contrast, NeRV-
Enc leverages large-scale training to learn restoration capa-
bilities and shows robust generalization to unseen videos.
This makes NeRV-Enc a more practical and versatile tool
for video restoration.

3.2. Video Decoding: NeRV-Dec

Efficient Video Storage. Prior to video decoding, it is nec-
essary to store the video-specific weights efficiently. To
achieve storage efficiency, we employ weight quantization
and entropy encoding for these weights, similar to compres-
sion techniques used in NeRV approaches [5, 7].
Generate NeRV Weights. After obtaining the video-
specific weights θ̂′, we move on to calculate the final
weights θ′ for a NeRV model, which we represent as
fθ=θ′ . As shown in Fig. 4 (b), the video-specific weights
θ̂′ ∈ Rdout×N for a convolution layer (with parameters
in RCout×Cin×K×K) might be smaller. To compensate, we
introduce learnable parameters θ1 ∈ RCout×Cin×K×K for
each layer, which are shared across all videos and known as
video-agnostic parameters. The final weights of the NeRV
model, detailed in Fig. 4, are determined by an element-
wise multiplication of the video-agnostic weights θ1 and the
video-specific weights θ̂′.
Video Decoding Prelimaries for NeRV. With the final
NeRV model weights, we access the video frame using a
feedforward operation with the frame index t. Following a
common practice in implicit neural representations [5, 36],
we initially normalize t to the interval [-1, 1], apply posi-
tional encoding, and obtain a time embedding vector. This

Figure 4. Left Generate video-specific weights θ̂′ via the hyper-
network. Right Generate NeRV weights θ′ by element-wise mul-
tiplication of θ̂′ and video-agnostic weights θ1.

a) Video decoding in NeRV

t

b) Parallel decoding in NeRV-Dec

t

Group conv layers

Conv layersPE.

PE. + Repeat

Figure 5. Parallel video decoding of NeRV-Dec is achieved using
group convolution. NeRV decoding is a special case of NeRV-
Dec when the group size is 1. ’PE.’ denotes position encoding.
’Repeat’ indicates embedding repetition for input expansion.

time embedding is used as input to the NeRV model fθ,
which generates the video frame x̂t. The output of the final
layer is adjusted by an output bias of 0.5, considering im-
age normalization within the [0, 1] range. In essence, video
decoding can be expressed as x̂t = fθ=θ′(t), as shown in
Fig. 5 (a). Efficient video decoding can be accomplished by
running NeRV with a batch size encompassing all frames.
Parallel Decoding for NeRV-Dec. NeRV-Dec enables par-
allel decoding by running several NeRV models at once, al-
lowing multiple videos to be decoded simultaneously. This
process is efficiently executed using group convolution,
where each group corresponds to a separate NeRV model,
as illustrated in Fig. 5 (b). Note that NeRV decoding is a
special case of NeRV-Dec when video number is 1. Since
video decoding is an essential operation in implicit neural
representations, this method of parallelization significantly
boosts the training speed of NeRV-Enc. Furthermore, it
improves the scalability and efficiency of NeRV-Dec when
used as a video data loader.

3.3. Model Optimization

To optimize NeRV-Enc, our objective is to minimize the re-
construction loss between the ground truth frame xt and the
reconstructed frame x̂t, which is expressed as:

ϕ∗ = argminϕ,θ0,θ1

∑
x∈Dtrain

∑
t

∥fθ=gϕ(x)(t)− xt∥22 (1)

4

. Once we have the optimized NeRV-Enc ϕ∗, we evaluate it
on the test set Dtest, addressing the two key questions raised
in Sec. 1: can NeRV-Enc effectively fit training videos, and
can it successfully generalize to test videos.

NeRV-Enc consists of three sets of learnable parame-
ters: those for the hyper-network ϕ, initial weight tokens
θ0, and model-agnostic weights θ1. For optimization, we
utilize a training objective based on the mean square error
(MSELoss) between the output frame and the ground truth
frames.

4. Experiment

4.1. Datasets and Implementation Details

In our experiments, we utilize three widely-adopted video
datasets: Kinetics-400 (K400, our training dataset)[24],
Something-Something V2 (SthV2)[18], and UCF101 [46].
Kinetics-400 comprises about 240k training videos and 20k
test videos, each lasting 10 seconds, across 400 classes. Due
to the extensive size of the full dataset, we may use a sub-
set of K400 for training, consisting of 25 videos per class.
For evaluation, we employ the test sets of K400, SthV2
(about 20k motion-centric videos), and UCF101 (about 3.5k
human-centric videos). The quality of the reconstructed
videos is evaluated using PSNR and SSIM.

The default video size is 256 × 256 with 8 frames. To
preprocess the data, we first resize the input video so that
its shorter side is 256. We then perform a center crop to
obtain a 256 × 256 clip. Subsequently, we uniformly sam-
ple 8 frames from the clip and input them to the model. For
data tokenization, we divide the videos into 64×64 patches.
The video model consists of four NeRV blocks, each with
upscale factors of 4, 4, 4, and 4, respectively [5]. The convo-
lution layers in these blocks maintain a consistent channel
width of 16, except for the first block, where the input chan-
nel represents the time embedding dimension, and the last
block, where the output channel corresponds to the video
channels. The kernel size is 1 for the first convolution layer
and 3 for the subsequent ones.

The default transformer hyper-network is composed of 6
encoder layers with a hidden dimension of 720 and a for-
ward dimension of 2800. We employ the AdamW [33] op-
timizer with a batch size of 32, an initial learning rate of
1e-4. Our learning rate undergoes a step-wise decay, de-
creasing by a factor of 0.1 at 90% of the total training steps.
Our implementation is built on PyTorch [38]. Model train-
ing is conducted using 8 A100 GPUs for all experiments,
unless otherwise specified. For video decoding, we test on
a machine with 1 A100 GPU and 8 CPUs 1. Additional im-
plementation details and visualization results are available
in the supplementary material.

1Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz

4.2. Video Encoding

NeRV-Enc vs. Pixel-wise INRs. We begin by compar-
ing our method to pixel-wise methods TransINR [8] and
GINR [26], which also employ hyper-networks for gen-
erating implicit representations. However, these methods
rely on pixel-wise Implicit Neural Representations (INRs),
which exhibit inherent inefficiencies, particularly in large-
scale training, as demonstrated in Tab. 2.

Firstly, pixel-wise INRs are notably slower than image-
wise INRs, a fact also demonstrated in NeRV [5]. For in-
stance, with the same 150-epoch training, NeRV-Enc out-
performs pixel-wise methods, achieving 7× faster train-
ing for 4 frames, 10.8× for 8 frames, and 15.6× for 16
frames. Secondly despite having a smaller INR model θ
and less model-specific weights θ̂′ (i.e. smaller video size),
NeRV-Enc achieves superior video reconstruction quality
for both training and testing videos, as measured by PSNR
and SSIM metrics. The difference in quality becomes more
noticeable when comparing pixel-wise methods to NeRV-
Enc with similar training times. In this comparison, NeRV-
Enc outperforms them by +4.6, +5.0, and +4.1 PSNR for
videos with 8 frames in the K400, SthV2, and UCF101 test
sets, respectively. Qualitative results are provided in Fig. 6,
comparing NeRV-Enc with pixel-wise methods. These vi-
sual comparisons illustrate that NeRV-Enc excels in captur-
ing videos with superior fidelity and fine details.

Scale NeRV-Enc. We also investigate scaling techniques
to further improve the performance of NeRV-Enc: longer
training epochs, more training videos, and a larger hyper-
network. The results are presented in Tab. 3. It is evident
that expanding the training epochs and incorporating more
training videos leads to substantial improvements in recon-
struction quality, with a notable increase of +2 in PSNR and
+0.06 in SSIM for both training and testing videos. Addi-
tionally, increasing the size of the hyper-network, together
with a larger dropout ratio for transformer layers as well,
enhances reconstruction performance. The integration of
these three techniques results in our final NeRV-Enc model,
leading to +2.6, +3.1, and +2.9 PSNR improvements for
three test sets. We find that NeRV-Enc’s reconstruction per-
formance improves with increased computational resources
and provide more ablation results in the appendix.

NeRV-Enc vs. NeRV. Using the finalized NeRV-Enc, we
compare it with the NeRV baseline [5] which uses gradient-
based optimization for model fitting and video encoding.
The results, depicted in Fig. 7, highlight the effective gen-
eralization of NeRV-Enc across various video datasets, in-
cluding K400, SthV2 and UCF101. Significantly, NeRV-
Enc demonstrates a remarkable encoding acceleration, be-
ing 104× times faster than the NeRV baseline, yet main-
taining comparable output quality, as measured by PSNR
and SSIM metrics. It’s noteworthy that NeRV-Enc enables

5

Methods F Encoder
size

INR
size ↓ #θ̂′ ↓ Epoch GPU

hrs ↓
PSNR ↑ SSIM ↑

Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

TransINR [8] 4 48.0M 99k 25k 150 63 23.7 22.1 24.6 22.1 0.659 0.631 0.728 0.622
GINR [27] 4 47.6M 139.4k 25.6k 150 65 24.5 23.2 25.9 23.1 0.685 0.66 0.744 0.66
NeRV-Enc 4 47.6M 85.6k 24.1k 150 9 26.6 26.6 29.4 26 0.756 0.754 0.816 0.752
NeRV-Enc 4 47.6M 85.6k 24.1k 1000 62 27.9 27.5 30.5 27.1 0.794 0.783 0.838 0.783

TransINR [8] 8 48.0M 99k 25k 150 119 22.3 20.3 22.8 20.7 0.626 0.595 0.703 0.591
GINR [27] 8 47.6M 139.4k 25.6k 150 123 23.9 22.8 25.3 22.7 0.671 0.65 0.737 0.651
NeRV-Enc 8 47.6M 85.6k 24.1k 150 11 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
NeRV-Enc 8 47.6M 85.6k 24.1k 1500 110 27.8 27.4 30.3 26.8 0.791 0.78 0.835 0.778

TransINR [8] 16 48.0M 99k 25k 150 234 21.5 18.4 21.1 19.2 0.615 0.555 0.678 0.561
GINR [27] 16 47.6M 139.4k 25.6k 150 242 22.9 21.7 24.2 21.7 0.647 0.624 0.72 0.625
NeRV-Enc 16 47.6M 85.6k 24.1k 150 15 23.6 23.2 25.9 22.9 0.657 0.642 0.731 0.642
NeRV-Enc 16 47.6M 85.6k 24.1k 2000 200 25.4 24.9 27.7 24.5 0.711 0.693 0.772 0.692

Table 2. NeRV-Enc vs. Pixel-wise INR methods. NeRV-Enc is much faster (up to 15×) than pixel-wise methods for training. It also
shows better quality in reconstructing videos across datasets, as measured by PSNR and SSIM. ‘F’ refers to frame number, #θ̂′ is the size
of video-specific weights. Training time is measured in ‘GPU hrs’.

Figure 6. Visualizations for INR encoding methods: TransINR [8] (Top), GINR [26] (Middle), and NeRV-Enc (Bottom, ours). Our
method excels in reconstructing videos with superior fidelity and fine details. Best viewed digitally and zoomed in.

E S N PSNR ↑ SSIM ↑
Train K400 SthV2 UCF Train K400 SthV2 UCF

25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723

✓ 27.8 27.4 30.4 26.9 0.791 0.782 0.837 0.781
✓ 26.5 26.7 29.5 26.2 0.756 0.762 0.822 0.759

✓ 27.8 27.9 30.9 27.4 0.792 0.799 0.852 0.802

✓ ✓ ✓ 28.1 28.4 31.6 28.1 0.803 0.808 0.862 0.817

Table 3. Scale NeRV-Enc by increasing training epochs E , hyper-
nerwork size S, training video number N .

real-time video encoding, positioning implicit video repre-
sentation as a viable and efficient option for video codec.

NeRV-Enc for Video Restoration. Like prior methods

that use implicit representations for videos, we found that
NeRV-Enc is also effective for video restoration tasks. Our
findings, detailed in Fig. 8, cover three types of video
degradation: downsampling, blurring, and masking of in-
put videos. We observed that these degradations in pixel
space are effectively restored in implicit space. While our
primary focus in this paper is on fast encoding and decod-
ing, we have included quantitative results in the appendix
for further reference.

Ablation for Layer-adaptive Modulation. The ablation
study on layer-wise modulation is presented in Tab. 4,
demonstrating that even with reduced parameters in Layer
2 (see row 3), we can achieve results on par with the layer-
specific approach (see row 2). Moreover, we incrementally
increase parameters in other layers (rows 4 to 7) until no
additional improvements were observed. In examining the

6

Methods Layer 1/2/3/4 params TotalParam Train K400 SthV2 UCF101

Layer-uniform [8] 4.1k 9.2k 9.2k 6.9k 29.4k 22.1 21.5 24.1 21.6
Layer-specific [27] 0 36.9k 0 0 36.9k 25.5 25.4 28.1 24.8

Layer-adaptive
(ours)

0 18.4k 0 0 18.4k 25.1 25.0 27.7 24.4
1.1k 18.4k 4.6k 0 24.1k 25.8 25.8 28.5 25.2
2.4k 18.4k 4.6k 0 25.4k 25.5 25.4 28.2 25.0
1.1k 18.4k 9.2k 0 28.7k 25.8 25.8 28.5 25.3
1.1k 18.4k 4.6k 0.1k 24.2k 25.7 25.6 28.3 25.1

Table 4. Ablation Study on layer-daptive modulation. We compare uniform tokens (TransINR [8]), layer-specific tokens (GINR [27]),
and our layer-adaptive tokens. Our approach surpasses the layer-specific method in reconstruction performance (PSNR ↑) and achieves a
50% reduction in video size (total parameters ↓).

10 2 102

Video encoding time (s)

26

28

30

32

34

PS
NR

 (d
B)

104x faster

STH-V2
UCF101

K400 NeRV-Enc (ours)
NeRV (300 epochs)

NeRV (600 epochs)
NeRV (900 epochs)

10 2 102

Video encoding time (s)
0.75

0.80

0.85

0.90

SS
IM

104x faster

Figure 7. Encoding speed. NeRV-Enc (ours) is 104× faster
than NeRV [5] baseline (using gradient-based optimization) across
multiple datasets.

distribution of weight tokens, we evaluate uniform tokens
(TransINR [8]), layer-specific tokens (GINR [27]), and our
proposed layer-adaptive weight tokens, which use 29.4K,
36.9K, and 24.1K video-specific weights, respectively. The
results indicate that our approach not only achieves better
reconstruction quality but also does so with fewer video-
specific parameters, contributing to reduced video size and
enhanced compression efficiency. Note that our layer-
adaptive modulation (highlighted in the gray row) not only
surpasses the performance of the layer-specific method but
also achieves a 50% reduction in the total number of param-
eters (video size).

4.3. Video Decoding

Parallelization. NeRV-Dec improves upon NeRV by using
multiple stacked models to decode several videos at once.
Its efficiency comes from a shared time embedding layer
and a group convolution process that can be parallelized.
We evaluate this parallelization by varying the number of
videos for decoding. NeRV decoding is a specific case of
NeRV-Dec when decoding video number is 1. As shown in
Fig. 9 (Left), there is a near-linear speedup in decoding as
video batch size increases from 1 to 16. Beyond a batch size
of 16, decoding speed plateaus around 5200 videos per sec-

ond, maximizing GPU usage. Video decoding (data load-
ing) is crucial as videos are decoded repeatedly, essential
for playback, streaming, and research. Preview of multi-
ple videos is also common for video platforms. Typically,
videos are divided into clips or picture groups for storage.
Our parallel decoding significantly boosts video loading ef-
ficiency.

Comparison with H.264. NeRV-Dec outperforms a tra-
ditional data loader using the H.264 codec (485 videos per
second for 8 CPUs), achieving a 11× increase in loading
speed. To further understand the decoding performance of
H.264, we explore various ways for its speed improvement.
Surprisingly, transitioning from CPU to GPU as the de-
coding device does not yield speed gains, except for larger
videos. Consequently, we increase the number of CPUs and
data loader workers, presenting the results in Fig. 9 (Right).
The results show that while augmenting the CPU count en-
hances video loading speed, the improvements diminish, es-
pecially beyond 16 CPUs. It’s worth noting that even with
96 CPUs, H.264 is still 2× slower than our NeRV-Dec.
Given that powerful chips like GPUs are already preferred
for deep learning practitioners, the video loading advan-
tages of NeRV-Dec can be leveraged without the need for
additional hardware or specialized design and optimization.
Detailed Comparisons. Besides the video decoding speed,
we conduct a comprehensive assessment of NeRV-Dec, ex-
amining video reconstruction quality and compression per-
formance. Our method undergoes comparisons against var-
ious video representations, including traditional codecs like
H.264 and AV1, as well as RAM reading (load pre-decoded
videos from RAM) for efficient data loading. Detailed re-
sults are presented in Tab. 5.

Video Compression. To compress the video size
in NeRV-Dec, we implement quantization to the video-
specific weights (θ̂′) and employ Huffman encoding. These
techniques substantially decreases disk storage require-
ments while maintaining video quality. It retains 99%
of the PSNR and SSIM values of the original model us-
ing just 6 bits per parameter. With a reduced video size

7

Figure 8. Top: input videos with various degradations from test set. Bottom: output videos of NeRV-Enc. Left: downsampled; Middle:
blurred; Right: mask.

RAM AV1
CRF 60

H.264 NeRV-Dec (ours)
CRF 35 CRF 40 CRF 45 8 bits 7 bits 6 bits 5 bits 4 bits

Size ↓ 1.15MB 21.9KB 20.4KB 13.1KB 8.7KB 23.7KB 20.7KB 17.7KB 14.7KB 11.6KB
PSNR ↑ - 32.4 32.8 30.0 27.3 28.4 28.3 28.1 27.5 25.6
SSIM ↑ - 0.910 0.912 0.860 0.788 0.808 0.807 0.802 0.784 0.712
VPS ↑ 2031 313 447 460 485 5175

Table 5. Detailed comparison. NeRV-Dec reduces video size by 65× via weight quantization, while being 2.5× faster than loading
pre-decoded videos from RAM. Although AV1 and H.264 provide better compression (smaller video size) and video quality (higher PSNR
and SSIM), NeRV-Dec decodes videos much faster (higher VPS).

1 2 4 8 16 32 64
Video num in NeRV-Dec

0

1000

2000

3000

4000

5000

VP
S

H.264
(8CPU)

H.264
(16CPU)

H.264
(32CPU)

H.264
(64CPU)

H.264
(96CPU)

Ours
(1GPU)

0

1000

2000

3000

4000

5000

VP
S

 2.0x
faster

Figure 9. Left: NeRV-Dec’s decoding speed scales efficiently with
increasing video numbers. Note NeRV decoding is a special case
of NeRV-Dec when video number is 1 (the leftmost bar). Right:
NeRV-Dec is 2× faster than H.264 with 96 CPUs.

(65× smaller), NeRV-Dec even surpasses loading videos
from RAM, achieving a 2.5× faster speed with GPU assis-
tance. As deep learning platforms commonly utilize power-
ful hardware like GPUs for computation, the fast and simple
video loading provided by NeRV-Dec can significantly en-
hance video research and alleviate data loading bottlenecks.

Comparison with Traditional Codecs. While the com-
pression ratio of our method is slightly lower than that of
conventional codecs such as H.264 and AV1, our method is
11× faster in video decoding and can be easily implemented
on most devices without any specific design or optimiza-
tion. As outlined in Tab. 3, enhancing the scale of NeRV-
Enc’s training by employing additional resources (like more
videos for training, extended training epoches, or a larger
hyper-network) could yield further improvements and lead
to better compression performance. Beyond just numeri-
cal comparisons, we provide visual comparisons between

H.264 and NeRV-Dec at an equivalent PSNR of 28.1, as
shown in Fig. 10. These visual examples clearly demon-
strate the blocking artifacts present in H.264, emphasizing
the superior visual quality offered by NeRV-Dec. This This
advantage highlights the potential preference for NeRV-Dec
in scenarios where visual quality is a priority.

4.4. Limitations and Future Works

Hybrid INRs enhance the NeRV framework by utilizing in-
puts that are either content-adaptive embeddings or learn-
able 2D/3D grids. These enhancements allow for superior
performance in tasks like video compression or interpola-
tion compared to the original NeRV. We extend NeRV-Enc
to also produce these video-specific embeddings or learn-
able grid features, which then serve as inputs for NeRV. We
show results in Tab. 6 and NeRV-Enc is adaptable to di-
verse INR methods. While NeRV-Enc shows promise in
facilitating hybrid INRs, further investigation is required to
achieve better results. The hybrid INR approach (HNeRV),
which involves learning both input embedding and decoder
weights, necessitates a more complex design compared to
NeRV where only decoder weights are learned.

Our current research is confined to video encoding with
predetermined frame numbers and spatial resolutions. A
potential direction for future work is to adapt our method-
ology to efficiently manage videos with varying lengths and
resolutions, without the need to simply segment them into
shorter clips. NeRV-Enc does not yet match the perfor-
mance of established video codecs such as H.264 in video

8

Figure 10. Visual comparison: H.264 (Top) vs. NeRV-Dec (Bottom) at similar PSNR. H.264 exhibits noticeable blocking artifacts,
whereas NeRV-Dec provides a more visually appealing result. Best viewed digitally and zoomed in.

PSNR ↑ SSIM ↑
INR Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

NeRV 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
HNeRV 23.1 22.9 25.1 22.6 0.647 0.644 0.727 0.642

Table 6. NeRV-Enc results for NeRV and hybrid INR (HNeRV).

compression. Closing this performance gap is another fo-
cus for our future work. Meanwhile, further exploration of
reconstruction loss and restoration tasks holds promise to
produce visually-appealing results.

5. Conclusion
In this paper, we introduce NeRV-Enc, a hyper-network
that improve encoding speed by generating weights for the
NeRV model. Our findings reveal that NeRV-Enc signif-
icantly accelerates the encoding process, achieving a re-
markable speed-up of 104 times compared to the traditional
training of NeRV using gradient-based optimization. Ad-
ditionally, we present NeRV-Dec, a parallel video decoder
that surpasses traditional codecs in speed by 11×, and out-
performs the speed of loading pre-decoded videos from
RAM by 2.5×. This advancement offers a significant im-
provement in video decoding and loading efficiency.

References
[1] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes

Balle, Sung Jin Hwang, and George Toderici. Scale-space
flow for end-to-end optimized video compression. In CVPR,
2020. 3

[2] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb
Sterkin, Victor Lempitsky, and Denis Korzhenkov. Image
generators with conditionally-independent pixel synthesis.
In CVPR, pages 14278–14287, 2021. 2

[3] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle
Chen, Gary J Sullivan, and Jens-Rainer Ohm. Overview of
the versatile video coding (vvc) standard and its applications.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 31(10):3736–3764, 2021. 2

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV. Springer,
2020. 1

[5] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim,
and Abhinav Shrivastava. NeRV: Neural representations for
videos. In NeurIPS, 2021. 1, 2, 3, 4, 5, 7

[6] Hao Chen, A Gwilliam Matthew, Bo He, Ser-Nam Lim, and
Abhinav Shrivastava. CNeRV: Content-adaptive neural rep-
resentation for visual data. In BMVC, 2022. 2

[7] Hao Chen, Matthew Gwilliam, Ser-Nam Lim, and Abhinav
Shrivastava. HNeRV: Neural representations for videos. In
CVPR, 2023. 1, 2, 4

[8] Yinbo Chen and Xiaolong Wang. Transformers as meta-
learners for implicit neural representations. In European
Conference on Computer Vision, 2022. 2, 3, 4, 5, 6, 7, 11

[9] Yue Chen, Debargha Murherjee, Jingning Han, Adrian
Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen, Hui
Su, Urvang Joshi, et al. An overview of core coding tools in
the av1 video codec. In 2018 Picture Coding Symposium
(PCS), pages 41–45. IEEE, 2018. 2

[10] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution:
Attention over convolution kernels. In CVPR, pages 11030–
11039, 2020. 2

[11] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning con-
tinuous image representation with local implicit image func-
tion. In CVPR, pages 8628–8638, 2021. 2

[12] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[13] Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu,
Vidit Goel, Zhangyang Wang, Humphrey Shi, and Xiaolong
Wang. Videoinr: Learning video implicit neural represen-
tation for continuous space-time super-resolution. CVPR,
2022. 1

[14] Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-
Meyer, and Christopher Schroers. Neural inter-frame com-
pression for video coding. In ICCV, 2019. 3

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1

[16] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye
Teh, and Arnaud Doucet. Coin: Compression with implicit
neural representations. In ICLR workshop, 2021. 2

[17] Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al.
Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946–35958,
2022. 2

[18] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fründ, Peter Yianilos, Moritz Mueller-
Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and

9

Roland Memisevic. The ”something something” video
database for learning and evaluating visual common sense.
In ICCV, 2017. 5

[19] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks.
In ICLR, 2017. 2

[20] Amirhossein Habibian, Ties van Rozendaal, Jakub M. Tom-
czak, and Taco S. Cohen. Video compression with rate-
distortion autoencoders. In ICCV, 2019. 3

[21] Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen,
Shuaiyi Huang, Yixuan Ren, Ser-Nam Lim, and Abhinav
Shrivastava. Towards scalable neural representation for di-
verse videos. In CVPR, 2023. 1, 2

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. CVPR, 2022. 1

[23] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-
free generative adversarial networks. arXiv preprint
arXiv:2106.12423, 2021. 2

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 5

[25] Mehrdad Khani, Vibhaalakshmi Sivaraman, and Mohammad
Alizadeh. Efficient video compression via content-adaptive
super-resolution. arXiv preprint arXiv:2104.02322, 2021. 3

[26] Chiheon Kim, Doyup Lee, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Generalizable implicit neural representa-
tions via instance pattern composers. CVPR, 2023. 2, 3, 5,
6

[27] Subin Kim, Sihyun Yu, Jaeho Lee, and Jinwoo Shin. Scal-
able neural video representations with learnable positional
features. NeurIPS, 2022. 1, 4, 6, 7, 11

[28] Didier Le Gall. Mpeg: A video compression standard for
multimedia applications. Commun. ACM, 1991. 2

[29] Zizhang Li, Mengmeng Wang, Huaijin Pi, Kechun Xu, Jian-
biao Mei, and Yong Liu. E-nerv: Expedite neural video
representation with disentangled spatial-temporal context.
ECCV, 2022. 1, 2

[30] Haojie Liu, Tong Chen, Ming Lu, Qiu Shen, and Zhan
Ma. Neural video compression using spatio-temporal priors.
arXiv preprint arXiv:1902.07383, 2019. 3

[31] Jerry Liu, Shenlong Wang, Wei-Chiu Ma, Meet Shah, Rui
Hu, Pranaab Dhawan, and Raquel Urtasun. Conditional en-
tropy coding for efficient video compression. In ECCV,
2020. 3

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. ICCV, 2021. 1

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[34] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shecht-
man, Ravi Ramamoorthi, and Manmohan Chandraker. Mod-
ulated periodic activations for generalizable local functional
representations. In ICCV, pages 14214–14223, 2021. 2

[35] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 2

[36] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, pages 405–421. Springer, 2020. 2, 4

[37] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 2

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 5

[39] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G. Anderson, and Lubomir Bourdev. Learned
video compression. In ICCV, 2019. 3

[40] Oren Rippel, Alexander G. Anderson, Kedar Tatwawadi,
Sanjay Nair, Craig Lytle, and Lubomir Bourdev. Elf-vc: Ef-
ficient learned flexible-rate video coding. In ICCV, 2021. 3

[41] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In NeurIPS, 2020. 2

[42] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In NeurIPS,
2019. 2

[43] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
NeurIPS, 2020. 2

[44] Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
NeurIPS, 2020. 2

[45] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial generation of continuous images. In
CVPR, pages 10753–10764, 2021. 2

[46] Khurram Soomro, Amir Roshan Za4mir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 5

[47] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on Circuits and
Systems for Video Technology, 2012. 2

[48] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. In NeurIPS, 2020. 2

[49] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

10

data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357. PMLR, 2021. 1

[50] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and
Ajay Luthra. Overview of the h. 264/avc video coding stan-
dard. IEEE Transactions on circuits and systems for video
technology, 2003. 2

[51] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In ECCV,
2018. 3

[52] Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Fe-
ichtenhofer, and Philipp Krahenbuhl. A multigrid method for
efficiently training video models. In CVPR, pages 153–162,
2020. 2

[53] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. NeurIPS, 32, 2019. 2

A. Appendix
A.1. Pseudocode of NeRV-Enc and NeRV-Dec

We firstly provide pseudocode for NeRV-Enc and NeRV-
Dec in Algorithm 1.

Algorithm 1 Pseudocode in a PyTorch style.

############ 1) Video encoding: NeRV-Enc ############
Input: video x, initial weights θ0

Output: video-specific weights θ̂′

Video tokenization
x = FC1(x.tokennize()) # d \times M

Concat video patches and initial weights as input
x = x.concat(θ0) # d \times (M+N)

Hypernetwork gϕ output video-specific weights θ̂′

θ̂′ = g_ϕ.forward(x)[-N:]. # d \times N

θ̂′ = FC2(θ̂
′) # Cout \times N

############ 2) Video decoding: NeRV-Dec ############

θ̂′ = θ̂′.expand_as(θ1) # broadcast into needed shape

θ′ = θ1 * θ̂′ # Cout \times Cin \times K \times K

Initial NeRV model fθ with generated weights
f_θ.reset_parameter(θ′)

Input frame index t, and output video frame x̂t
x̂t = f_θ.forward(t)

############### 3) Model optimization ###############
Compute loss and backward gradients
loss = MSELoss(x̂t, xt)
loss.backward()

update all learnable parameters
update([ϕ, θ0, θ1])

FC: fully connected layer;
MSELoss: mean square error loss.

A.2. Scaling the training of NeRV-Enc

We explore factors such as the number of training videos,
training epochs, encoder size, and weight token distribu-
tions, as outlined in Tab. 7. Generally, NeRV-Enc’s recon-
struction performance improves with increased computa-

PSNR ↑ SSIM ↑
Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

Epoch ablation
150 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
300 26.8 26.7 29.5 26.2 0.763 0.757 0.819 0.757
600 27.2 27.1 30 26.6 0.774 0.768 0.827 0.766

1200 27.6 27.3 30.2 26.7 0.787 0.776 0.832 0.774
1800 27.8 27.4 30.4 26.9 0.791 0.782 0.837 0.781

Encoder size ablation
47.6M 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
125M 26.4 26.2 28.9 25.6 0.751 0.743 0.806 0.737
251M 26.5 26.7 29.5 26.2 0.756 0.762 0.822 0.759
404M 26.5 26.5 29.3 25.9 0.753 0.755 0.816 0.751

Video number ablation
10k 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
20k 26.7 26.6 29.4 26 0.757 0.752 0.814 0.751
40k 27 26.9 29.7 26.4 0.764 0.761 0.821 0.762
80k 27.6 27.7 30.6 27.2 0.791 0.791 0.845 0.794

240k 27.8 27.9 30.9 27.4 0.792 0.799 0.852 0.802

Table 7. NeRV-Enc ablations. For ablation of weight tokens,
we compare uniform tokens (TransINR [8]), layer-specific tokens
(GINR [27] at the 2nd layer), and our proposed layer-adaptive
weight tokens. Please refer to Fig. 3 for their distinction.

Figure 11. Top: Input videos with various degradations (Left:
downsampled; Middle: blurred; Right: mask). Bottom: Output
videos by NeRV-Enc.

tional resources, although the gains tend to plateau as train-
ing duration becomes adequate. Higher dropout ratios are
essential for achieving improved generalization in longer
training epochs or with larger hyper-networks. These ab-
lations underscore that the reconstruction quality of NeRV-
Enc can be significantly enhanced by scaling the training
with additional resources, including more training videos,
longer training epochs, and larger hyper-networks.

A.3. NeRV-Enc for video restoration tasks.

Our NeRV-Enc framework is versatile across various down-
stream tasks, and shows robust restoration quality for vari-
ous degradations. Results in Fig. 11 and Tab. 8 demonstrate
that the reconstruction quality for downsampled, blurred,
and masked input videos is comparable to that achieved
through conventional video regression. This underscores
the framework’s effectiveness in restoring common pixel
degradations within the implicit space.

A.4. Weight quantization for efficient storage.

In this quantization procedure, each element of a vector µ is
mapped to the nearest integer using the linear transforma-

11

Input
degradation

Input PSNR Output PSNR
Train k400 sth-v2 ucf101 Train k400 sth-v2 ucf101

Downsample 20.1 20.3 22.9 19.5 24.5 24.3 26.8 23.9
Gaussian blur 23.1 23.3 26.0 22.3 24.8 24.7 27.3 24.0
Inpainting 19.0 18.6 18.1 18.4 25.5 25.2 27.9 24.7
No - - - - 25.8 25.8 28.5 25.2

Table 8. Results for downstream tasks with NeRV-Enc.

tion defined by the formula:

µi = Round
(
µi − µmin

scale

)
∗ scale + µmin,where

scale =
µmax − µmin

2b − 1
,

(2)

Here, µi represents a vector element, Round is a rounding
function, b is the quantization bit length, µmax and µmin are
the maximum and minimum values of vector µ, and ’scale’
is the scaling factor. Additionally, we use Huffman encod-
ing to further reduce the disk storage.

Results for Model Quantization We extend our analysis
on model quantization in Tab. 9, assessing performance on
three datasets: K400, Something-V2, and UCF-101.

Bits PSNR ↑ SSIM ↑
K400 STH-V2 UCF101 K400 STH-V2 UCF101

32 28.4 31.6 28.1 0.808 0.862 0.817

8 28.4 31.5 28.1 0.808 0.861 0.816
7 28.3 31.5 28 0.807 0.86 0.815
6 28.1 31.2 27.9 0.802 0.855 0.811
5 27.5 30.2 27.3 0.784 0.836 0.794
4 25.6 27.7 25.6 0.712 0.759 0.725

Table 9. Ablation study on model quantization.

A.5. Implementation details

Video Encoding. We firstly provide training details of
NeRV-Enc below.
• NeRV-Enc:

– Video: 8 frames, frame stride evenly sample from the
whole video, 256×256 resolution.

– Batch size: 32
– Patch size: 64
– Position embedding dimension for NeRV: 16
– Activation layer in NeRV: GeLU
– Kernel size for convolution layers in NeRV: 1, 3, 3, 3
– Upscale factor for NeRV blocks: 4, 4, 4, 4
– Token number for NeRV layers: 4, 128, 64, 0
– Token dimensions for NeRV layers: 256, 144, 288, 0
– Model dimension and feed-forward dimension for

transformer encoder layers: 720 and 2800 for NeRV-
Enc of 47.6M, 1600 and 6400 for NeRV-Enc of larger
NeRV-Enc (251M)

– Dropout ratio in transformer encoder layers: 0 for de-
fault training, 0.15 for larger NeRV-Enc and long train-
ing

– Optimizer: AdamW
– Learning rate: 0.0001

Video Decoding. To assess the decoding speed of NeRV-
Dec, H.264, RAM, and AV1, we employ a PyTorch dat-
aloader to facilitate parallel decoding. We initially stack
the NeRV model weights before inputting them into NeRV-
Dec. Regarding video compression, we utilize the ‘torchvi-
sion.io.write video’ function to store videos, applying vari-
ous CRF (Constant Rate Factor) settings. For video loading,
we experiment with two backends: ‘decord’ and ‘torchvi-
sion.io.read video’, selecting the one that offers superior
performance for H.264 and AV1.

12

	. Introduction
	. Related Work
	. Method
	. Video Encoding: NeRV-Enc
	. Video Decoding: NeRV-Dec
	. Model Optimization

	. Experiment
	. Datasets and Implementation Details
	. Video Encoding
	. Video Decoding
	. Limitations and Future Works

	. Conclusion
	. Appendix
	. Pseudocode of NeRV-Enc and NeRV-Dec
	. Scaling the training of NeRV-Enc
	. NeRV-Enc for video restoration tasks.
	. Weight quantization for efficient storage.
	. Implementation details

